
European Journal of Operational Research 261 (2017) 43–53

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Clustering data that are graph connected

Stefano Benati a , Justo Puerto

b , Antonio M. Rodríguez-Chía

c , ∗

a Dipartimento di Sociologia e Ricerca Sociale, Università di Trento, Via Verdi 26, 38122 Trento. Italy
b IMUS. Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012 Sevilla. Spain
c Faculty of Sciences, Universidad de Cádiz, Avda. República Saharaui, 11510 Puerto Real (Cádiz). Spain

a r t i c l e i n f o

Article history:

Received 18 June 2016

Accepted 7 February 2017

Available online 12 February 2017

Keywords:

Combinatorial optimization

Clustering

Clique partitioning

Integer programming

a b s t r a c t

A new combinatorial model for clustering is proposed for all applications in which individual and rela-

tional data are available. Individual data refer to the intrinsic features of units, they are stored in a matrix

D , and are the typical input of all clustering algorithms proposed so far. Relational data refer to the ob-

served links between units, representing social ties such as friendship, joint participation to social events,

and so on. Relational data are stored in the graph G = (V, E) , and the data available for clustering are the

triplet G = (V, E, D) , called attributed graph. Known clustering algorithms can take advantage of the re-

lational structure of G to redefine and refine the units membership. For example, uncertain membership

of units to groups can be resolved using the sociological principle that ties are more likely to form be-

tween similar units. The model proposed here shows how to take into account the graph information,

combining the clique partitioning objective function (a known clustering methodology) with connectiv-

ity as the structural constraint of the resulting clusters. The model can be formulated and solved using

Integer Linear Programming and a new family of cutting planes. Moderate size problems are solved, and

heuristic procedures are developed for instances in which the optimal solution can only be approximated.

Finally, tests conducted on simulated data show that the clusters quality is greatly improved through this

methodology.

© 2017 Elsevier B.V. All rights reserved.

1

h

s

c

a

e

S

m

h

b

a

t

t

d

i

E

m

i

g

f

fi

c

t

v

t

d

i

t

p

p

t

a

“

f

c

h

0

. Introduction

The problem of clustering consists in discovering or detecting

ow a population is partitioned into two or more subgroups, each

ubgroup specified by distinct features. The typical outcome of a

lustering algorithm is the assignment of observations to groups

nd, most of the times, some estimation of the characteristics of

very group. There are many techniques proposed for clustering.

ome of them are constructive, in the sense that observations are

erged together one at a time until the required partition is found,

ierarchical trees being an example. Other techniques have com-

inatorial structure, for example the k -means, in which clusters

re the solutions of an optimization problem, and different par-

itions are evaluated through the objective function. Finally, some

echniques assume that data can be described through probability

istributions, so that the optimal clustering is calculated maximiz-

ng the likelihood function, for example with the EM algorithm.

ach technique has its pros and cons, consequently it can be the

ost appropriate for some application. Clustering is an easy task
∗ Corresponding author.

E-mail address: antonio.rodriguezchia@uca.es (A.M. Rodríguez-Chía).

s

g

r

t

ttp://dx.doi.org/10.1016/j.ejor.2017.02.009

377-2217/© 2017 Elsevier B.V. All rights reserved.
f groups are well separated. Conversely, if the borders between

roups are uncertain and populated by many observations of dif-

erent groups with similar features, then the precision of the classi-

cation decreases to the point that algorithms just output random

lusters.

In this contribution, it is shown that the capability of detecting

he true clusters is enhanced if, together with the standard indi-

idual data (that is, data that are pertinent to the single popula-

ion unit), the researcher can observe relational data too, that is,

ata describing the connections among units. To make an example

n social network analysis, suppose that a researcher wants to de-

ermine groups with homogeneous cultural orientations within a

opulation of individuals. Data come from a survey in which peo-

le answered to questions about their attitudes to religion, poli-

ics, family and so on. It is often the case that individuals classified

s “secular” are not neatly separated from individuals classified as

religious”, as they can share the same views on social matters dif-

erent from religion, see (Inglehart & Baker, 20 0 0). Therefore the

lustering algorithm does not correctly classify individuals and the

ubsequent analysis is flawed, for example the estimation of the

roups parameters could result wrong. We propose that a possible

emedy to the border uncertainty is to consider an additional data:

he relationships, such as friendship, kinship, sympathy, and so on,

https://dx.doi.org/10.1016/j.ejor.2017.02.009
https://www.ScienceDirect.com
https://www.elsevier.com/locate/ejor
https://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.02.009&domain=pdf
mailto:antonio.rodriguezchia@uca.es
https://dx.doi.org/10.1016/j.ejor.2017.02.009

44 S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53

l

t

o

g

t

B

&

t

i

n

p

p

t

c

n

F

m

E

m

f

h

t

t

d

a

u

s

d

a

t

p

m

m

p

p

t

i

f

c

t

p

w

o

M

S

t

fi

b

f

t

w

t

s

d

1 A warning is necessary here: The reader should not be mislead by the term

clique . The way in which the term is used in cluster analysis depends on the fact

that the individual data D are viewed as embedded on a complete graph, so that

clusters are viewed as cliques. In this new model and in the following sections,

connectivity is a property established with reference to the underlying graph G.
that exist between individuals. This datum presents an important

additional information, expressed by social scientists as the princi-

ple of homophylia , see (McPherson, Smith-Lovin, & Cook, 2001). Ac-

cording to this principle, people tend to have like-minded friends.

With this datum at hand, the uncertain group attributions of a

clustering algorithm can be resolved.

Relational data are widely used in social network analysis. In

this sense, we mention correlation clustering that operates in a

scenario where the relationships between the objects are known

instead of the actual representations of the objects, see (Bansal,

Blum, & Chawla, 2004; Charikar, Guruswami, & Wirth, 2005;

Swamy, 2004). It is discussed in Wasserman and Faust (1994) that

there is an intrinsic difference between individual and relational

data. Individual data are specific attributes that form the so-called

compositional dimension of the social actor. This dimension is to

be distinguished from the so-called structural dimension of the so-

cial actor, represented by the relations between individuals. Fol-

lowing Wasserman and Faust (1994) , there is also the third di-

mension of an actor, that is called affiliation: It is the individual

membership to specific groups, as clubs, companies or social and

cultural classes. Often this variable is unknown and must be deter-

mined through the classification process. The methodology devel-

oped here is aimed at this purpose.

Individual data are given as a matrix D of n rows and m

columns, in which n is the number of individuals and m is the

number of features. Relational data are given as an undirected

graph G = (V, E) , in which V are the individuals, | V | = n, and there

is an edge e ij ∈ E iff there is a relation between i , j ∈ V . The data

structure that combines the graph G = (V, E) with the data matrix

D forms the triplet G = (V, E, D) and is called attributed graph, as

the matrix D can be interpreted as node data, see (Bothorel, Cruz,

Magnani, & Micenkova, 2015).

Early research on attributed graph simplified the problem to ap-

ply standard clustering algorithms to the reduction. One form of

simplification is obtained projecting the matrix D into the graph

G , defining costs or distances c ij on arcs (i , j), depending on the

dissimilarity between individual i , j . The weighted graph G

′ is so

obtained and then analyzed using known graph partitioning tech-

niques, see (Neville, Adler, & Jensen, 2003). Another form of sim-

plification proceeds the other way round, that is, projecting the

connections of E into the matrix D , and then applying a clustering

algorithm, (Combe, Largeron, Egyed-Zsigmond, & Géry, 2012). A

more ingenious way of combining G with D is suggested in Cheng,

Zhou, Huang, and Yu (2012) , in which the two data structures are

recoded to form an augmented graph with two classes of nodes.

One class of nodes represents individuals and the other class rep-

resents features, with arcs connecting both kinds of nodes. Node

distances are calculated through random walks, and then the k -

medoids (or p -median) clustering is applied. To summarize these

previous results: Whether G is projected to D or D to G , the re-

searcher has the advantage that no new algorithm is to be devel-

oped for clustering. But the drawback is that compositional and re-

lational data are treated as homogeneous information, even though

their nature is intrinsically different.

An approach that keeps separated the two data types is pre-

sented in Xu, Ke, Wang, Cheng, and Cheng (2014) . Here, it is as-

sumed that there is a probabilistic model underlying relational and

compositional data. As commonly assumed in model-based cluster-

ing, each unit belongs to a latent class, that determines the proba-

bilities of peculiar features and links. Each class is characterized by

one distribution function with its parameters, all data being gen-

erated by the distributions mixture. Parameters, including mem-

bership, are estimated through the maximization of the likelihood

function and using the EM algorithm. The approach is elegant, but

requires high computational times and the explicit assumption of

what multivariate distribution generated the data.
In this paper, we propose a combinatorial optimization prob-

em to cluster attributed graph. The combinatorial structure of

he objective function and constraints is borrowed from a previ-

us clustering model, namely the clique partitioning (at its ori-

in, the clique partitioning problem has been formulated for clus-

ering binary (or qualitative) data, see (Bertsimas & King, 2016;

ertsimas & Shioda, 2007; Grötschel & Wakabayashi, 1989; Jaehn

 Pesch, 2013; Johnson, Mehrotra, & Nemhauser, 1993; Marco-

orchino & Michaud, 1982; Zhou, Hao, & Goëffon, 2016). However,

n our model it is imposed that the eligible groups must be con-

ected through the arcs of G , in the sense that there must be a

ath from each pair i , j belonging to the same group. We use clique

artitioning as the clustering model because, unlike the k -means,

he number of groups k is not fixed in advance, but it is the out-

ome of the algorithm, gaining flexibility in its applications 1 . Our

ew approach differs from the previous ones in two main aspects.

irst, a combinatorial objective function is faster to optimize than

aximum likelihood, just as the k -means algorithm is faster than

M optimization. Second, compositional and relational data are not

erged, but kept separate to play different roles in the problem

ormulation: objective function and constraints.

From a pure optimization point of view, the model developed

ere combines two combinatorial problems, namely clique par-

ition, coming from clustering individual data, and the spanning

ree detection, coming from imposing connections on the relational

ata. The first one is a well-known NP-hard problem. Moreover,

lthough the spanning tree design can be modeled as a contin-

ous linear program, when superimposed on other combinatorial

tructure (clique partition in this case) becomes also extremely

ifficult. Thus, it is not surprising that our model is NP-hard and

lso extremely difficult, as it will be clear in the following sec-

ions. In spite of that, we have found several valid integer linear

rogramming formulations, based on different rationale. These for-

ulations provide exact solutions for the considered problems for

edium size instances (up to 40 units). Beyond this limit, we pro-

ose to use heuristic approaches whose performances are com-

ared with exact solutions up to admissible sizes.

The paper is so structured in 6 sections. The first section is

he introduction where the problem is motivated and positioned

n the related literature. In the second section, we introduce the

ormal definition of the problem and present several mathemati-

al programming formulations. We develop two kinds of formula-

ions: compact and extended. The former are mixed integer linear

rograms whose set of constraints are polynomial in the input size

hereas the latter are formulations with an exponential number

f constraints. Both set of formulations are solved either directly by

IP solvers or with an ad hoc Branch-and-Cut scheme in Section 3 .

ection 4 presents our heuristic algorithms. We propose two of

hem which are variations of an adapted local search method. The

fth section contains the computational experiments. We compare

etween them the different exact methods (those based on MIP

ormulations) on a testbed of random instances and we show that

his approach can solve to optimality medium size instances. Next,

e apply the two heuristic algorithms to larger sizes reporting

heir good behavior both on CPU time and quality of the obtained

olutions. The paper ends with some remarks on future research

irections.

S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53 45

2

t

t

a

a

r

f

t

−

m

t

s

n

c

g

a

p

p

o

i

e

t

j

a

t

m

t

l

n

(

2

a

e

u

l

b

o

s

a

d

n

S

d

t

m

n

l

v

s

t

n

b

t

fl

o

F

a

z

O

r

t

a

x

A

T

n

s

o

W

o

t

c

r

t

a

s

t

o
. Problem formulation

Let V = { 1 , . . . , n } be the set of units and let F k , k = 1 , . . . m, be

he set of binary features measured on V . Let data be collected in

he n × m -matrix D = [d ik] . Each binary feature defines an equiv-

lence relation between units, that is, unit i is equivalent to j

ccording to features k iff d ik = d jk . The number of equivalence

elations between two objects defines a cost function c ij in the

ollowing way: Let m i j = #(equivalence relations between i and j) ,

hen c i j = m − 2 ∗ m i j . The value of c ij ranges from the minimum

m, denoting full concordance between units i and j , to the maxi-

um of m , denoting discordance between i and j . The clique parti-

ioning problem is defined as finding the partition � = { V 1 , . . . , V p }
uch that the following objective function is minimized:

f (�) =

p ∑

k =1

∑

i, j∈ V k
c i j (1)

As the problem is in minimization form, units for which c ij is

egative tend to be in the same group. Conversely, units for which

 ij is positive tend to be in different groups. As the number p of

roups is not determined in advance, but it is the output of the

lgorithm, and since weights are both positive and negative, the

roblem is different from the p -cut problem, the k -means and the

 -median, and all other clustering algorithms in which the number

f clusters must be defined a-priori.

We consider the case that relational data are available as stored

n the graph G = (V, E) , in which nodes i ∈ V are the units, and

dges e ij ∈ E describe the unit links. For Q ⊆V , G [Q] = (Q, E[Q]) is

he subgraph induced by Q , e.g. the graph with edges e ij ∈ E [Q] iff i ,

 ∈ Q . The partition � = { V 1 , . . . , V p } is feasible iff G [V i] , i = 1 , . . . , p

re all connected subgraphs. We say that there is an interlink be-

ween two units i and j if they belong to the same partition ele-

ent. A subset of nodes is said to be interlinked if it is included in

he same partition element. Then the Connected Partitioning Prob-

em is to find the partition � = { V 1 , . . . , V p } that is formed by con-

ected components on G and that minimizes the objective function

1) .

.1. Flow based formulation with two indices variables

Recall that we have stated in the introduction that we consider

n undirected network G = (V, E) with node set V = { 1 , ..., n } and

dge set E , where e i j (= e ji) ∈ E represents the edge joining the

nits/nodes i and j ; and for any i , j ∈ V with i < j , c ij is the inter-

ink cost (benefit) between i and j , i.e., the cost (benefit) generated

y including in the same block these two nodes.

In the following, we present a valid formulation for the problem

f finding the cheapest partition of the nodes of a graph with re-

pect to the full pairwise interlink cost with the requirement that

ll nodes within a block must be connected in the subgraph in-

uced by the block. In order to guarantee the connection of the

odes in the same block, we use the flow based formulation of the

panning Tree given by Gavish (1983) for the capacitated minimal

irected tree problem. However, since in our case we only need

he connection among all the nodes in the same block, it is not

andatory to avoid cycles in the resulting graph connecting these

odes, i.e., it is not necessary to have a tree, so we can use a re-

axed version of that formulation.

In the formulation of our problem we will use continuous flow

ariables to guarantee the connection among the nodes of the

ame block, defined on the arcs of the directed network G D =
(V, A) , where A consists of the set of arcs (i , j) and (j , i) such

hat the edge e i j (= e ji) ∈ E. We will assume that we have the same

umber of single source nodes as the number of blocks, which will

e the nodes with the highest index in each block, with outflow
he cardinality of the corresponding block minus one and zero in-

ow. All other nodes have a demand of one unit.

Therefore, in order to give a formulation of this problem based

n the above ideas, we define the following families of variables.

or any i, k = 1 , . . . , n such that i ≤ k, the variable z ik is defined

s:

 ik =

{
1 , if node i is assigned to block k ,
0 , otherwise.

bserve that, without loss of generality, we can assume that to

epresent a block we use the node with the highest index within

he block. Therefore, z ik variables have to be defined only for i ≤ k .

For any i, j = 1 , . . . , n such that i < j, the variable x ij is defined

s:

 i j =

{
1 , if nodes i and j are in the same block,
0 , otherwise.

nd, for any (i , j) ∈ A , the variable f ij is defined as:

f i j = amount of flow sent from node i to node j .

herefore the flow-based formulation is as follows:

(F f low

) min

n ∑

i =1

n ∑

j= i +1

c i j x i j (2)

s.t. x i j ≤ z ik +

n ∑

� = j,� � = k
z j� , ∀ i, j, k = 1 , . . . , n, i < j, i ≤ k. (3)

x i j ≥ z ik + z jk − 1 , ∀ i, j, k = 1 , . . . , n, i < j ≤ k, (4)

z ik ≤ z kk , ∀ i, k = 1 , . . . , n, i ≤ k, (5)

n ∑

k = i
z ik = 1 , ∀ i = 1 , . . . , n, (6)

n ∑

i =1: (k,i) ∈ A
f ki −

n ∑

i =1: (i,k) ∈ A
f ik =

k ∑

i =1

z ik − 1 , ∀ k = 1 , . . . , n, (7)

f i j ≤ (n − 1) x i j , ∀ (i, j) ∈ A, i < j, (8)

f ji ≤ (n − 1) x i j , ∀ (j, i) ∈ A, i < j, (9)

f i j ≥ 0 , ∀ i, j = 1 , . . . , n, (10)

x i j ∈ { 0 , 1 } , ∀ i, j = 1 , . . . , n, i < j, (11)

z ik ∈ { 0 , 1 } , ∀ i, k = 1 , . . . , n, i ≤ k. (12)

The objective function (2) accounts for the total cost of the

odes within the same block. The family of constraints (3) en-

ure that if i and j go in the same block then there is at least

ne representative of a block where both nodes can be assigned.

ith (4) we guarantee that the variable x ij takes the value 1 if and

nly if nodes i and j are in the same block. Both together ensure

he interlink among the nodes of the same block. The family of

onstraints (5) ensures that each node is assigned to a block rep-

esented by a node v k if v k is assigned to this block. In addition,

he family (6) guarantees that each node belong to just one block

nd this is represented by the node with the greatest index. Con-

traints (7) are the equations of balance of flow for the nodes of

he graph. In particular, the node representing each block has an

utgoing flow equal to the number of nodes in this block minus

46 S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53

a

a

n

w

t

S

t

c

t

w

m

U

n

c

s

t

j

s

f

a

2

s

o

t

1

T

n

l

s.t. (3) − (6) , (11) − (25) .
one and the remaining nodes of the block has demand 1. The fam-

ilies of constraints (8) and (9) avoid the flow between nodes of

different blocks. Finally, (11) and (12) give us the binary condition

over the variables x and z, respectively. Observe that using (3) and

(4) , the integrality condition over the x variables can be relaxed

and then, family of constraints (11) can be removed.

2.1.1. Valid inequalities

In the following, we propose some families of valid inequalities

for the above formulation:

1. The interlink among the nodes of the same block is reinforced

as follows, see (Grötschel & Wakabayashi, 1990; Johnson et al.,

1993):

x i j + x j� − x i� ≤ 1 , ∀ i, j, l = 1 , . . . , n, i < j < �,

x i� + x j� − x i j ≤ 1 , ∀ i, j, � = 1 , . . . , n, i < j < �,

x i j + x i� − x j� ≤ 1 , ∀ i, j, � = 1 , . . . , n, i < j < �.

However, in our model we have applied a reduced number

of inequalities where redundant constraints in the above set

have been removed using the result in Miyauchi and Sukegawa

(2015) . These inequalities are:

x i j + x j� − x i� ≤ 1 , ∀ i, j, l = 1 , . . . , n, i < j < �,

c i j ≤ 0 or c j� ≤ 0 (13)

x i� + x j� − x i j ≤ 1 , ∀ i, j, � = 1 , . . . , n, i < j < �,

c i� ≤ 0 or c j� ≤ 0 (14)

x i j + x i� − x j� ≤ 1 , ∀ i, j, � = 1 , . . . , n, i < j < �,

c i j ≤ 0 or c i� ≤ 0 . (15)

2. The idea that each block is represented by the node with the

largest index is reinforced as follows:

z kk +

n ∑

j= k +1

x k j ≥ 1 , ∀ k = 1 , . . . , n, (16)

z kk + x k j ≤ 1 , ∀ j, k = 1 , . . . , n, j > k. (17)

3. The relationship between variable x and z is strengthened as

follows:

z i j ≤ x i j , ∀ i, j = 1 , . . . , n, i < j. (18)

Taking into account these valid inequalities, we present the fol-

lowing strengthening of F f low

,

(F f low

) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (3) − (18) .

2.2. MTZ based formulation with two indices variables

In this section we propose a second formulation for our prob-

lem using the Miller–Tucker–Zemlin (MTZ) inequalities. MTZ in-

equalities guarantee the connectivity of the solutions and prevent

cycles, these constraints were initially proposed by (Miller, Tucker,

& Zemlin, 1960) in the context of the Traveling Salesman Prob-

lem. They have been adapted to other problems and reinforced

by different authors, see, e.g. (Bekta ̧s & Gouveia, 2014; Gouveia,

1996; Landete & Marín, 2014; Laporte, 1992). The MTZ formula-

tion for the Spanning Tree problem builds an arborescence rooted

at a specified node r ∈ V , in which arcs follow the direction from

the root to the leaves. It uses binary variables to represent the arcs

of the arborescence. Each edge e ij ∈ E , is associated with a pair of

binary variables, f ij and f ji , which take the value 1 if and only if
rcs (i , j) and (j , i) ∈ A belong to the arborescence, respectively. In

ddition, it uses continuous variables � i , denoting the position that

ode v i occupies in the arborescence with respect to r . In our case,

e build as many trees as the number of blocks, and the roots of

hese trees will be the nodes with the largest index in each block.

ince we will use this family of inequalities to ensure the connec-

ion among the nodes in the same block (not to build an arbores-

ence), some of the constraints of this family can be removed.

Hence, in order to give a formulation for our problem based on

he above ideas, we use the two families of binary variables that

e have used in the previous formulation, i.e. x and z , and now, as

entioned, the variables f ij are also binary and defined as

f i j =

{
1 , if the arc (i, j) ∈ A is chosen,
0 , otherwise.

sing these variables, the formulation of our problem is:

(F MT Z) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (3) − (6) , (11) , (12) ,

� i + 1 ≤ � j + n (1 − f i j) , ∀ i, j = 1 , . . . , n, (i, j) ∈ A, (19)

n ∑

i =1 , (i, j) ∈ E
f i j = 1 − z j j , ∀ j = 1 , . . . , n, (20)

f i j + f ji ≤ x i j , ∀ (i, j) ∈ A, i < j, (21)

f i j ∈ { 0 , 1 } , ∀ (i, j) ∈ E. (22)

The family of constraints (19) guarantee the label assigned to

ode j is at least the label assigned to node i if the arc (i , j) ∈ A is

hosen. Actually, this family avoids the tours. In addition, (20) en-

ure there is, at least, an incident arc at each node different from

he one representing its block. The family (21) guarantees that arcs

oining nodes of different blocks cannot be chosen. Finally, con-

traints (22) give the binary condition of the f variables. As in F f low

ormulation, we can relax the integrality condition over the x vari-

bles; and then, family of constraints (11) can be removed.

.2.1. Valid inequalities

Valid inequalities (13) –(18) derived for the flow formulation are

till valid for this formulation. Moreover, we have some additional

nes.

Through the following two families of inequalities, we guaran-

ee that the label assigned to the nodes representing the blocks is

;

� i ≥ z ii , ∀ i = 1 , . . . , n, (23)

� i ≤ 1 + n (1 − z ii) , ∀ i = 1 , . . . , n. (24)

he following inequalities ensure that the label associated with a

ode which is not representing its block will be at least 2,

2(1 − z ii) ≤ � i , ∀ i = 1 , . . . , n. (25)

Taking into account these valid inequalities, we present the fol-

owing strengthening of F MTZ ,

(F MT Z) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53 47

2

t

t

y

T

i

T

i

w

a

t

(

v

f

l

2

p

g

T

m

c

n

�

f

c

P

S

w

G

o

g

t

�

t

o

t

j

a

m

l

t

H

b

o

a

G

o

l

p

a

a

b

T

e

s

d

i

a

i

o

n

g

f

p

t

�

u

i

i

3

m

p

t

s

t

m

.2.2. Alternative formulation

Based on the previous formulation we can provide an alterna-

ive formulation where the family of variables z has been substi-

uted by variables y k ∀ k = 1 , . . . , n, defined as:

 k =

{

1 , if node k is the node with the highest index in its
block ,

0 , otherwise.

he formulation of the problem using this new family of variables

s:

(F 2 MT Z) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (11) , (13) − (15) , (19) , (21) , (22) ,

y k +

n ∑

j= k +1

x k j ≥ 1 , ∀ k = 1 , . . . , n, (26)

y k + x k j ≤ 1 , ∀ k < j = 1 , . . . , n, (27)

n ∑

i =1 , (i, j) ∈ A
f i j = 1 − y j , ∀ j = 1 , . . . , n, (28)

y k ∈ { 0 , 1 } , ∀ k = 1 , . . . , n. (29)

he families of constraints (26) and (27) guarantee that each node

s assigned to just one block and this is represented by the node

ith the greatest index. Actually, these two families of constraints

re a rewriting of constraints (16) and (17) using variables y . In

he same sense, constraints (28) are an adaptation of constraints

20) using variables y . Again, the integrality condition on the y

ariables can be relaxed by constraints (28) .

The families of valid inequalities (23) –(25) are still valid for this

ormulation (replacing z ii by y i for all i ∈ V .)

Taking into account these valid inequalities, we present the fol-

owing strengthening of F 2 MTZ ,

(F 2 MT Z) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (11) , (13) − (15) , (19) , (21) − (29) .

.3. A formulation with an exponential number of constraints

In this section we propose a third type of formulation for our

roblem using a family of exponential number of inequalities to

uarantee the connectivity of the solutions.

heorem 2.1. Let x be a solution of formulation F f low

(F f low

) re-

oving constraints (7) –(9) or of formulation F MTZ (F MT Z) removing

onstraints (19) –(21) , such that x does not satisfy the connectivity of

odes within some block. Then, x does not satisfy the inequality

n ∑

 = i +1 : � �∈ S
x i� +

i −1 ∑

� =1 : � �∈ S
x �i − x i j ≥ 0 , (30)

or some S ⊆V and for any i , j (i < j) ∈ S , such that, i and j are not

onnected in G [S] .

roof. The rationale behind inequality (30) is the following. A set

 ⊆V would become a block if G [S] (the graph induced by its nodes)

ere connected. On the contrary, if i , j ∈ V were not connected in

 [S] then any block containing i and j should include at least an-

ther node, � �∈ S, to ensure the connection of the resulting induced

raph. This condition is encoded in the inequality (30) assuming

hat either the inequality x i � ≥ x ij or x � i ≥ x ij is fulfilled for some

 �∈ S, i.e., if i and j belong to the same block (which forces x i j = 1)
hen � �∈ S should exist, belonging to the same block, either x i� = 1

r x �i = 1 . �

The reader may note that, from its own construction, if a solu-

ion x satisfies the inequalities (30) for all S ⊆V and for any i , j (i <

) ∈ S , such that, i and j are not connected in G [S], then x induces

 partition such that its nodes are connected within its blocks.

Observe that formulations in Sections 2.1 and 2.2 have two

ain groups of constraints; the first one to guarantee the inter-

ink among all the nodes of the same block and the second one,

o ensure the connection of the subgraph induced by each block.

ence, we can obtain a third family of valid formulations just com-

ining the different ways to model the interlink among the nodes

f the same block with the family of constraints (30) for all S ⊆V

nd for all i , j (i < j) ∈ S , such that, i and j are not connected in

 [S]; that ensures connectivity within blocks, as stated in the proof

f Theorem 2.1 . Among all the possible combinations, in the fol-

owing, we show the two valid formulations of this kind that have

rovided the best computational results out of a number of tests

mong different alternatives. These are based on formulations F MT Z

nd F 2 MT Z after replacing the families of constraints (19), (23) –(25)

y (30) . The first one uses variables x and z ;

(F E 1) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (3) − (6) , (11) − (18) , (20) − (22) , (30) .

he second one uses only variables x and results in:

(F E 2) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (11) , (13) − (15) , (21) , (22) , (26) − (29) , (30) .

As mentioned above, the family of constraints (30) contains a

xponential number of inequalities. Therefore, in order to give a

olution approach for formulations FE 1 and FE 2 , we will need to

evelop a procedure that allows us to separate unfeasible solutions

n an efficient way. In order to describe this procedure, assume we

re given a solution (̄x , ̄z , f̄) of Formulation FE 1 removing the fam-

ly of constraints (30) (or including, at most, a polynomial subset

f them). The following algorithm separates those solutions that do

ot satisfy the connection condition within each block. In this al-

orithm we will refer to LSP (i , j) as the length of the shortest path

rom node i to node j in the graph G = (V, E) ; this can be com-

uted, for instance, by the algorithm of Floyd–Warshall.

Observe that (̄x , ̄z , f̄) is cut by (31) because due to (3) we have

hat:

k −1 ∑

 = i +1 : � �∈ S k
x i� +

n ∑

� = k +1

x i� +

i −1 ∑

� =1 : � �∈ S k
x �i = 0 .

Alternatively, for formulation FE 2 where the z variables are not

sed anymore, we consider the same type of cuts but redefin-

ng S k := { � : x̄ �k = 1 and ȳ k = 1 } . Observe that the same inequal-

ty (31) with this S k also cuts away the solution (̄x , ̄y , f̄) in FE 2 .

. Exact solution approaches

In addition to solving the previous formulations using a com-

ercial solver, we propose two ad-hoc solution approaches for our

roblem. The first one consists on a Branch & Cut procedure and

he second one is based on the use of incomplete formulations and

equentially introducing cuts in the nodes of the branch and bound

ree to obtain feasible solutions. In what follows we describe both

ethodologies.

48 S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53

Table 1

Computational results of formulations in Section 2 .

n Formulation # Time GAP GAP_R Nodes

20 F f low 0 7 .2 0 .0 25 .6 1441 .5

F MTZ 0 55 .1 0 .0 21 .2 29616 .1

F 2 MTZ 0 9 .9 0 .0 18 .6 13698 .4

B&C_ F f low 0 12 .3 0 .0 25 .6 2819 .3

B&C_ F MTZ 0 18 .0 0 .0 21 .6 11176 .8

B&C_ F 2 MTZ 0 5 .7 0 .0 18 .6 4861 .5

FI 1 0 2 .3 0 .0 16 .0 257 .2

FI 2 0 1 .7 0 .0 17 .0 59 .2

FI 3 0 0 .8 0 .0 27 .9 105 .1

FI 3 +sol_heu 0 0 .8 0 .0 27 .9 31 .4

30 F f low 4 4190 .1 12 .1 33 .0 74002 .0

F MTZ 5 4878 .8 6 .6 29 .4 307347 .0

F 2 MTZ 0 1747 .4 0 .0 25 .9 435875 .2

B&C_ F f low 4 4289 .4 9 .7 32 .4 77710 .2

B&C_ F MTZ 4 4566 .7 6 .5 29 .7 262300 .1

B&C_ F 2 MTZ 0 2235 .4 0 .0 25 .9 454493 .0

FI 1 1 953 .5 1 .3 23 .5 5301 .4

FI 2 0 121 .4 0 .0 24 .2 1158 .4

FI 3 0 36 .6 0 .0 34 .9 2383 .5

FI 3 +sol_heu 0 25 .0 0 .0 34 .9 1129 .4

36 F f low 10 7200 .1 30 .6 43 .4 28365 .3

F MTZ 10 7199 .8 39 .6 52 .3 97495 .2

F 2 MTZ 6 6249 .5 15 .1 34 .6 362969 .4

B&C_ F f low 10 7200 .0 26 .3 41 .3 33382 .1

B&C_ F MTZ 10 7199 .8 39 .6 51 .5 92430 .5

B&C_ F 2 MTZ 5 5568 .8 9 .0 30 .3 347770 .6

FI 1 3 3339 .7 2 .5 23 .7 8817 .0

FI 2 0 1240 .1 0 .0 24 .2 4608 .8

FI 3 0 1016 .1 0 .0 34 .8 25810 .4

FI 3 +sol_heu 0 487 .2 0 .0 34 .8 8875 .8

40 F f low 10 .0 7200 .2 54 .2 59 .2 12746 .0

F MTZ 10 .0 7200 .0 22 .5 34 .1 38550 .8

F 2 MTZ 7 .0 5790 .6 34 .7 46 .8 116288 .9

B&C_ F f low 10 .0 7200 .0 55 .6 60 .1 14611 .8

B&C_ F MTZ 10 .0 7199 .9 38 .1 47 .1 37762 .5

B&C_ F 2 MTZ 8 .0 6556 .0 31 .5 43 .8 120047 .3

FI 1 8 .0 6480 .2 11 .4 26 .5 9047 .5

FI 2 4 .0 3993 .7 8 .0 26 .7 6239 .9

FI 3 4 3400 .7 7 .1 37 .7 34733 .6

FI 3 +sol_heu 2 2656 .3 2 .2 35 .3 27093 .8

l

e

T

c

A

t

b

i

3

F

(

l

3.1. Branch & cut procedure

For the formulations F f low

, F MT Z and F 2 MT Z , we have developed

a B&C procedure, where we have introduced a family of cuts in

each node of the branch and bound tree. Indeed, in each node of

the tree, we iteratively solve the resulting problem after includ-

ing cuts of the type (31) for formulations F f low

, F MT Z and F 2 MT Z by

applying Algorithm 1 . In this case, since we cannot guarantee the

integrality of the optimal solution in each node of the B&B tree,

we redefine S k imposing that z̄ �k > ε for the first two formulations

and x̄ �k > ε for the third one, instead of z̄ �k = 1 and x̄ �k = 1 for any

ε > 0, respectively, in Table 1 .

Algorithm 1 Separation algorithm.

1: procedure Adding cuts

2: for k ∈ V with z̄ kk = 1 do

3: S k := { � : z̄ �k = 1 } � The k th block

4: for i, j(i < j) ∈ S k do

5: Compute LSP (i, j) in G = (V, E) with length of edges

defined by:

length (e i j) :=

{
0 , if e i j ∈ E[S k]
1 , otherwise.

6: if LSP (i, j) > 0 then � i and j are not connected in

G [S k]

7: Add the following inequality of family (30):

k −1 ∑

� = i +1 : � �∈ S k
x i� +

n ∑

� = k +1

x i� +

i −1 ∑

� =1 : � �∈ S k
x �i − x i j ≥ 0 . (31)

8: end if

9: end for

10: end for

11: end procedure

The results obtained applying this Branch & Cut procedure to

the formulations F f low

, F MT Z and F 2 MT Z will be referred to as

B&C_ F f low

, B&C_ F MT Z , and B&C_ F 2 MT Z , respectively.

3.2. Incomplete formulations

In order to obtain better computational results in the solution

times of the previous formulations and to increase the size of the

instances that we are able to solve, we propose to use incomplete

formulations. That is, we propose to use formulations which are re-

laxations for our problem and introduce cuts progressively in the

nodes of the branch and bound tree to obtain feasible solutions.

Based on this idea, we follow three strategies to generate incom-

plete formulations.

The first two strategies consist of removing the group of con-

straints that ensures the connection, (30) , from FE 1 and FE 2 , re-

spectively. And, the third strategy i) removes (30) and ii) partially

removes the group of constraints that ensure the interlink among

the nodes of the same block.

3.2.1. First incomplete formulation

In order to generate the first incomplete formulation, we con-

sider formulation FE 1 without constraints (30) . Therefore, the re-

sulting formulation ensures the blocks are interlinked, i.e., all the x

variables between pair of nodes in the same block take the value 1.

However, the connection between each pair of nodes of the same

block is not guaranteed. Hence, in the solution procedure we will

proceed as in the B&C scheme previously described.
This incomplete formulation has been reinforced with the fol-

owing valid inequality:

j−1 ∑

i =1

 i j ∈ E

x i j +

n ∑

i = j+1

e ji ∈ E

x ji ≥ 1 − z j j , ∀ j = 1 , . . . , n. (32)

he family of inequalities (32) gives a necessary condition for the

onnection of the nodes in the same group but it is not sufficient.

ctually, it implies that every node of a block except the represen-

ative of the block must be connected with another node of the

lock via an edge of E. Therefore, the first incomplete formulation

s:

(F I 1) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (3) − (6) , (11) − (18) , (20) − (22) , (32) .

.2.2. Second incomplete formulation

In the second incomplete formulation, we consider formulation

E 2 where the family of constraints (30) has been removed and

32) is included instead. Therefore, the second incomplete formu-

ation is:

(F I 2) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (11) , (13) − (15) , (21) , (22) , (26) − (29) , (32) .

S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53 49

A

p

t

t

f

s

c

3

F

t

I

w

i

d

a

f

4

t

s

m

s

t

o

n

s

I

f

p

i

r

b

t

t

V

c

t

V

v

δ

s

i

c

l

t

f

Algorithm 2 g -Clique algorithm.

1: procedure Local Search for Connected Cluster

2: for t from 1 to t max do � Local Search is repeated t max

times

3: (�, f) ← Random − g − Clique (v ersion = “ RR ” or “ V NS ”) �

� is a random feasible partition, f is the objective function

4: loc _ opt = F ALSE � Condition for a local optimum

5: while loc _ opt = F ALSE do

6: � ← Mov es _ Compilation (�, . . .) � Generate a list of

moves

7: (M, d) ← Choose _ Mov e (�, . . .) � M a subset of moves,

d variation of the objective function

8: if d < 0 then

9: f ← f + d, � Decrease of the Objective Function

10: Apply M to �. � Obtain a new partition �

11: else

12: loc _ opt = T RUE. � Condition for a local optimum

13: end if

14: end while

15: end for

16: end procedure

m

(

5

p

o

l

b

m

a

t

s

m

t

p

� =

A

A

2

s before, these constraints ensure that all the x variables between

air of nodes in the same block take the value 1, but the connec-

ion between each pair of nodes of the same block is not guaran-

eed. The difference with respect to the previous one is that this

ormulation does not use z variables. Therefore, the non-connected

olutions obtained in each node of the branch-and-bound tree are

ut following a similar procedure to the B&C previously defined.

.2.3. Third incomplete formulation

In the third incomplete formulation, we consider formulation

I 2 where the family of constraints (13) and (14) have been par-

ially removed. Therefore, the third incomplete formulation is:

(F I 3) min

n ∑

i =1

n ∑

j= i +1

c i j x i j

s.t. (11) , (15) , (21) , (22) , (26) − (29) , (32) ,

x 1 j + x j� − x 1 � ≤ 1 , ∀ j, l = 1 , . . . , n, i < j < �, (33)

x in + x jn − x i j ≤ 1 , ∀ i, j = 1 , . . . , n, i < j < �. (34)

n this case, besides to not guarantee the connection of the nodes

ithin the same block, this formulation does not even ensure the

nterlink among all the nodes of the same block. Therefore, in ad-

ition to adding the violated cuts of the family (31), we need some

dditional valid inequalities, namely the violated constraints of the

amily (13) and (14) .

. Heuristic

The problem complexity requires the development of heuris-

ic methods for two reasons. The first reason is that we want to

olve problems of any size, but integer linear programming solves

edium-sized problems only. The second reason is that a good fea-

ible solution to the problem may be beneficial for the initializa-

ion of an integer linear programming algorithm.

The two methods that are proposed here are plain variations

n local search heuristics. It can be readily seen from the combi-

atorial structure of the problem that the clusters of an incumbent

olution can be modified re-assigning objects to different clusters.

f the connectivity constraints are still satisfied and the objective

unction improves, then the incumbent solution is updated. The

rocess is then repeated and halted when clustering cannot be

mproved. In this case it is said that a local optimum has been

eached. More formally, for every node i , let N[i] = { j : e i j ∈ E} ⊆ V

e the node set of the neighbors of i . Let � = { V 1 , . . . , V p } be a par-

ition of V , the partition is feasible if sets V j are connected for all

j = 1 , . . . , p. Let V c (i) be that set such that i ∈ V j , that is, c(i) = j.

A move m = (i, q) is a pair i ∈ V , q = 0 , . . . , p. If q ≥ 1, then

he move represents the possible assignment of unit i to cluster

 q ; the move is feasible if both new cluster V c (i) �{ i } and V q ∪ { i } are

onnected. If q = 0 , then the move represents the assignment of i

o an empty cluster, that is i becomes a singleton and eventually

 p+1 = { i } . The evaluation of a feasible move is calculated as the

alue:

iq =

{∑

j∈ V q c i j −
∑

j∈ V c(i)
c i j if q ≥ 1 ;

−∑

j∈ V c(i)
c i j if q = 0 .

(35)

The Local Search Algorithm 2 , called g -Clique begins with a fea-

ible partition �, then tries to improve the objective function mov-

ng units to different clusters. If there is no feasible move that de-

reases the objective function, then � is a local optimum. When a

ocal optimum is found, then the procedure can be applied again

o new initial partitions, for a maximum t max attempted re-starts.

At the beginning, Algorithm 2 calculates the objective function

 of a random clustering �. Partition � is selected by one of the
ethods “Random Restart” (RR) or “Variable Neighborhood Search”

VNS), that are described later. The while loop of instructions from

 to 14 leads � to a local optimum, applying repeatedly the

rocedures Moves_Compilation and Choose_Move . The output

f Moves_Compilation is a matrix � = [δiq] , i = 1 . . . n, q = 0 . . . p

isting the improvement of the objective function for each feasi-

le move. The output of the procedure Choose_Move is a list of

oves M = { m 1 , . . . , m w

} and a value d . The list of moves M , when

pplied to �, leads to a new feasible partition with the value of

he objective function decreased by d . The moves of M are cho-

en in a greedy way from the matrix �, considering that there are

ultiple moves improving the objective function without needing

o recalculate �. Indeed, if a move m t = (i, q) is chosen and ap-

lied to �, then values δjs remain the same if s � = q , c (i) and c (j)

 q , c (i). More precisely, procedure Choose_Move is described in

lgorithm 3 .

lgorithm 3 Choose_Move procedure.

1: procedure Choose_Move

2: Input: � = [δiq] , i = 1 , . . . , n, q = 0 , . . . , p � q = 0 is a

fictitious empty cluster.

3: Output: M= list of moves; d = variation of the objective

function

4: V ← { 1 , . . . , n } , K ← { 1 , . . . , p} , M ← ∅
5: D ← 0 , f improv e ← T RUE � Initialization

6: while V � = ∅ , K � = ∅ , f _ improv e = T RUE do

7: Let (i, q) ∈ arg min { δ jw

| j ∈ V, w ∈ K} � Move Choice

8: if δiq < 0 then

9: d = d + δiq � update d

10: M ← M ∪ { (i, q) }
11: V ← V \ { i }
12: K ← K \ { c(i) }
13: if q ≥ 1 then

14: K ← K \ q
15: end if

16: else

17: f _ improv e = F ALSE � no improvement moves are left

18: end if

19: end while

0: end procedure

50 S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53

X

o

p

c

a

t

s

b

n

i

fi

m

f

m

r

f

t

t

B

a

a

s

t

b

l

t

c

h

A

F

o

p

i

l

i

m

s

t

u

s

f

(

b

t

a

C

p

r

p

i

r

t

t

w

�

u

l

a

u

i
It remains to describe how partitions � are generated in Step

3 of Algorithm 2 . Two alternatives are tested. The first procedure

works out � from scratch and randomly and is called Random

Restart (RR). In our code, it is implemented labeling objects with

random integer numbers between 1 and c max , then the clusters of

� are the connected objects having the same label, with the fi-

nal number of clusters possibly being larger than c max . RR is cho-

sen for its simplicity among the family of the so-called Multi-Start

methods, see (Martí, Resende, & Ribeiro, 2013), and because it is

often used as the benchmark to which to compare more elaborate

method, for example see (Benati, 2008). In this contribution, RR

is compared to a second procedure called Variable Neighborhood

Search (VNS). The starting solutions of VNS blend randomness with

pieces of information of the best found solution. I, as not all par-

titions are broken, but only part of them. In our code, VNS is im-

plemented as follows: at the beginning � is a random partition.

Then, after that the first best solution �best is calculated, a new �

is worked out from �best relocating t objects into different clus-

ters, with t a varying parameter. At the earliest stages, t is small,

so that new partitions are in the immediate proximity of �best . If

no improvement of �best is found, then t is increased to begin the

search and to explore solutions that are further away from �best .

In our code, when t reassignments are to be done, both objects

and clusters are chosen randomly, but an object is relocated only

when the new partitions are feasible, e.g., connected. The qualita-

tive difference between RR and VNS is that the search of the latter

method is more constrained than the one of the former, as it is de-

signed to take advantage of the (potential) good clusters contained

in �best . The principle of VNS are explained in Hansen, Mladenovic,

and Moreno Perez (2010) , recent applications of VNS to clustering

problems are available Hansen, Ruiz, and Aloise (2012) and Cafieri,

Hansen, and Mladenovic (2014) .

5. Computational results

Algorithms are tested on simulated instances, in which clusters

features and network connections are controlled by some param-

eters. The experiment layout is the one proposed in Neville et al.

(2003) : Data are composed of n units on which m binary features,

F i = { 0 , 1 } , i = 1 , . . . , m, are recorded. Units belong to one of two

groups, each group is composed of n /2 units. If one unit belongs to

group 1, then Pr [F i = 1] = p c for all i = 1 , . . . , m, otherwise, if the

unit belongs to group 2, then Pr [F i = 1] = 1 − p c for all i = 1 , . . . , m .

If p c is close to one, then the two groups are well separated, as all

units of Group 1 tend to be a vector of ones and all units of Group

2 is a vector of zeros. As p c gets closer to 0.5, the distinction be-

tween the two groups is less and less precise. Then units are con-

nected through arcs: If two units (or nodes) belong to the same

group, then the probability that there is an arc between the two

units is p in (the probability of an internal arc). If the two nodes

belong to two different groups, then the probability that there is

an arc between the two units is p out (the probability of an exter-

nal arc). Vertex i is connected to X in vertices of the same group of

i and the X out vertices of the other group, where X in and X out are

random variables. With the parameters above, E [X in] ≈ np in /2 and

E [X out] ≈ np out /2. All experiments are run with p in > p out , so that

connectivity provides information: If a node i , whose membership

is uncertain, is connected with a node j that is known to belong to

Group k , then it is likely that i belongs to k as well.

At first, parameters have been fixed to m = 10 , p c = 0 . 60 , E [X in]

≈ 3 and E [X out] ≈ 1, and the algorithms have been run. In the

first set of experiments we have computationally tested the formu-

lations presented in Section 2 and their corresponding strength-

ening. Thus, we have implemented all of them in the commer-

cial solver XPRESS-IVE 1.24.04 running on an Intel(R) Core(TM)

i7-4790 CPU @400GHz 32GB RAM. The cut generation option of
PRESS was disabled in order to compare the relative performance

f the formulations cleanly. The source code used for this com-

utational analysis is available in https://github.com/antoniochia/

ode _ clustering _ data-0 .

The results are reported in Table 1 and they correspond to the

verage of those obtained after solving ten instances for each size,

he time was limited to 2 h of CPU. In a preliminar computational

tudy we have tested that formulations F f low

, F MT Z , F 2 MT Z report

etter performance that F f low

, F MTZ and F 2 MTZ , respectively, in run-

ing times and gap at termination. For this reason, in the follow-

ng we will only report results of F f low

, F MT Z , F 2 MT Z . Hence, the

rst two columns of Table 1 correspond to the size and the for-

ulation used to solve these instances, respectively. The third and

ourth columns give the number of instances that were not opti-

ally solved within the time limit and the CPU time in seconds,

espectively. The three last columns, GAP, GAP_R and Nodes, stand

or the averages of: gap between the best bound and the best solu-

ion after 7200 s (for the instances whose CPU time exceeded the

ime limit), the gap in the root node and number of nodes in the

&B tree, respectively. To obtain a general idea of the comparisons

mong these averaged values, for the results in the column Time

nd for different formulations, we have accounted the value 7200

 for those instances that exceed the time limit. In the same way,

he values used to compute the average of the column Nodes have

een the number of nodes of the B&B tree when the CPU time

imit was reached.

The formulations described in the second column correspond

o the ones described in Section 2 . The last one, “F I 3 + sol _ heu ”

orresponds to the third incomplete formulation where the solver

as been fed with the solution provided by the heuristic approach.

s we can see, among the three first formulations, F f low

, F MT Z and

 2 MT Z , the third one provides much better results than the other

nes. Regarding the branch and cut approach, although it does not

rovide a uniform improvement with respect to the running times,

t slightly improves the gap in the instances where the optimal so-

ution is not achieved within the limit time. With respect to the

ncomplete formulations, the third-incomplete formulation reports

uch better computational results than the remaining ones. Ob-

erve that the best computational results have been obtained when

he solution obtained by the heuristic approach is fed to the solver

sing the third incomplete formulation. As a conclusion, we can

ee that the successive improvements from the first to the last

ormulation have provided a remarkable reduction of CPU time

around two orders of magnitude).

The heuristic algorithm g -Clique, in its version RR and VNS, has

een coded in Julia 0.3.7. Julia is a programming language that is

rying to blend the flexibility of high level languages like MATLAB

nd R with the fast execution times of the low-level languages like

 and Fortran. At present, C and Fortran remain the fastest com-

ilers, but Julia is close second with computational times that are

eportedly only two or three times larger than the best ones.

Both versions RR and VNS start from the same initial random

artition �, the value t max , that is the maximum number of start-

ng solutions, has been fixed to 10 n . The computational results are

eported in Table 2 for the medium size instances and Table 3 for

he large size instances. Columns report the objective function and

he number of iterations needed to reach the best known solution,

ith iterations calculated as the number of times that the matrix

is worked out in line 6 of Algorithm 2 . In Table 2 , the last col-

mn reports the difference between the best found heuristic so-

ution and the optimal one, with empty spaces meaning that they

re equal, ”unknown” label meaning that the optimal solution is

nknown.

Looking at the results of Table 2 , there is a clear evidence that

n medium size problem RR is better than VNS. In 26 out of 40

https://github.com/antoniochia/code_clustering_data-0

S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53 51

Table 2

Heuristic results for small/medium sized problems.

Name RR it VNS it Optimal

20-1 −114 11 −114 64

20-2 −74 28 −34 4

20-3 −122 34 −122 67

20-4 −112 14 −110 8

20-5 −128 233 −102 8

20-6 −102 112 −96 13

20-7 −154 100 −102 442

20-8 −94 895 −92 226 −96

20-9 −116 9 −116 28

20-10 −140 11 −140 10

30-1 −254 1210 −248 1661

30-2 −152 171 −152 109

30-3 −200 1265 −144 12 −210

30-4 −200 1378 −170 1003

30-5 −288 1675 −276 296

30-6 −260 382 −260 101

30-7 −228 377 −222 280

30-8 −122 906 −108 95 −126

30-9 −276 973 −136 16

30-10 −168 2274 −154 21 −176

36-1 −296 3437 −296 1033 −300

36-2 −300 588 −300 33 −304

36-3 −356 1372 −340 15 −390

36-4 −326 1573 −304 1015 −340

36-5 v300 767 −300 420

36-6 −286 121 −286 1045

36-7 −310 1723 −324 452 −344

36-8 −230 1988 −204 25 −246

36-9 −260 1643 −242 518 −268

36-10 −290 1385 −290 115 −296

40-1 −294 2128 −284 15 unknown

40-2 −514 3038 −508 30

40-3 −288 1144 −238 2330 unknown

40-4 −384 1005 −384 252 −412

40-5 −326 1231 −342 2335

40-6 −292 912 −252 252 unknown

40-7 −272 964 −184 86 −330

40-8 −270 2453 −252 475 −314

40-9 −396 426 −376 417

40-10 −420 2053 −372 34 −456

p

o

o

t

o

a

p

I

t

i

s

w

n

V

s

V

w

t

l

e

t

p

t

t

s

Table 3

Heuristic results for the largest sized problems.

n label RR it VNS it

80 1 −1030 2389 −1086 4245

80 2 −968 7601 −1042 2670

80 3 −1274 14858 −1260 141

80 4 −976 8314 −900 1035

80 5 −1234 1487 −1370 415

80 6 −936 10286 −818 4512

80 7 −1246 10875 −1286 3260

80 8 −998 10262 −904 1954

80 9 −1190 5695 −1196 1562

80 10 −1416 2514 −1440 1732

100 1 −1630 5027 −1482 10911

100 2 −1730 2097 −1908 7597

100 3 −1216 3138 −1266 2873

100 4 −2094 4527 −1966 3299

100 5 −1442 13965 −1386 6752

100 6 −2176 2844 −2176 3648

100 7 −1686 2289 −1756 3034

100 8 −1390 15593 −1484 408

100 9 −1934 14973 −1798 2405

100 10 −2136 4052 −2194 15048

mean −1435.1 7139.3 −1435.9 3875.1

Table 4

Comparison between the exact and heuristic approaches.

n t_exact t_RR t_VNS # GAP_exact/heur

20 0 .8 1 .45 0 .59 9 0 .2

30 25 .0 2 .67 2 .00 7 1 .2

36 487 .2 4 .70 3 .56 2 3 .3

40 2656 .3 7 .36 4 .18 3 4 .6

60 33 .01 21 .15

80 86 .99 56 .74

100 191 .18 118 .32

h

i

u

C

C

n

b

t

w

i

t

i

h

i

e

1

1

r

s

w

v

a

s

e

t

G

o

k
roblems the RR objective function is better than the VNS one, in

nly 2 occurrences out of 40 VNS is better than RR. Considering

nly the 26 instances in which RR is better than VNS, one can see

hat in 23 out of 26 cases the number of iterations to calculate the

ptimum is larger for RR than for VNS: the average is 1197 iter-

tions for RR and only 358 for VNS. One explanation of the VNS

oor performance can be that the VNS search is too constrained:

t takes fewer iterations because the local search starts from solu-

ions that are too close to each other, so that one local optimum

s found in the early phase of exploration, but then there is no

ufficient diversification to jump to farther away feasible regions,

here possibly the optimum is located.

Computational results for the large size graphs, e.g. graphs with

 = 80 , 100 , are reported in Table 3 . Here the results of RR and

NS are similar, being the averages of the objective function the

ame. The best solution is found 8 out of 20 times by RR, 11 by

NS and one time by both. When we consider the instances in

hich RR is better, the iterations needed to find the best solu-

ion are 10276 on averages for RR, 3876 for VNS: Again, VNS takes

ess iterations. One possible explanation to the fewer iterations, but

qual objective function is that, as before, VNS explores solutions

hat are close to a local optimum, but now the dimension of the

roblem is so large that it is worth exploring thoroughly local op-

ima. Conversely, RR cannot find the best solution when it is close

o the incumbent solution, as RR starts every local search from

cratch.
Table 4 reports a comparison between the exact and the two

euristic methods. The first three columns report the size of the

nstances and the average solution times to solve these instances

sing F I 3 + sol _ heu, RR and VNS solution approaches, respectively.

olumn # gives the number of the ten tested instances in which g -

lique has been able to find the optimal solution. When these do

ot achieve the optimal solution, the last column reports the gap

etween the optimal and the heuristic solution. We can see that

he heuristic approaches provide good results in those instances

here we are solving to optimality. Indeed, the time to solve them

s less than 8 s for instances of size 40 and the gap with respect

o the optimal solution is less than five percent. In addition for

nstances of size 100, the solutions are obtained in less than 200 s.

The main motivation of the new clustering model proposed

ere is that connection data improves the quality of the cluster-

ng algorithms. The following experiment proves that it is so. The

xperiment has been run with fixed values of n = 50 and m =
0 , p out = 0 . 04 and with varying parameters p c = 0 . 65 , 0 . 60 , 0 . 55 ,

p in = 0 . 12 , 0 . 16 , 0 . 20 . Given those probabilities, the mode of Group

 is a vector of ones and the mode of Group 2 is a vector of ze-

os. The expected number of arcs that from one node point out-

ide its group is 1 and the expected number of arcs that point

ithin the group are approximately 3, 4, or 5. These data are

ery difficult to cluster because, even though the groups modes

re two vectors of all 0 and 1, those occurrences are seldom ob-

erved in practice. Rather, with the simulated values of p c , there is

ven a non-negligible probability that units are actually closer to

he mode of the other group than to its group mode. Consider a

roup 1 unit, let Z be the random variable describing the number

f occurrences F k = 1 out of the simulated m = 10 features. Even

nowing the groups modes, if Z = 5 then the researcher cannot

52 S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53

Table 5

ARI of 3 algorithms for clustering.

p c p in p out k -Means Clique g -Clique

0 .60 0 .20 0 .04 0 .038 0 .058 0 .136

0 .60 0 .20 0 .04 0 .021 0 .013 0 .121

0 .60 0 .20 0 .04 0 .255 0 .275 0 .374

0 .60 0 .20 0 .04 0 .020 −0 .004 0 .083

0 .60 0 .20 0 .04 −0 .006 0 .002 0 .131

0 .60 0 .20 0 .04 −0 .019 −0 .018 0 .075

0 .60 0 .20 0 .04 −0 .018 0 .081 0 .163

0 .60 0 .20 0 .04 0 .039 0 .098 0 .123

0 .60 0 .20 0 .04 0 .059 0 .071 0 .135

0 .60 0 .20 0 .04 0 .300 0 .050 0 .339

0 .60 0 .16 0 .04 0 .177 0 .125 0 .192

0 .60 0 .16 0 .04 0 .144 0 .157 0 .231

0 .60 0 .16 0 .04 0 .347 0 .195 0 .267

0 .60 0 .16 0 .04 −0 .014 0 .019 0 .084

0 .60 0 .16 0 .04 −0 .006 0 .192 0 .404

0 .60 0 .16 0 .04 0 .177 0 .214 0 .257

0 .60 0 .16 0 .04 0 .143 0 .122 0 .137

0 .60 0 .16 0 .04 0 .215 0 .110 0 .093

0 .60 0 .16 0 .04 −0 .018 0 .017 0 .091

0 .60 0 .16 0 .04 −0 .004 0 .007 0 .216

0 .60 0 .12 0 .04 0 .039 0 .003 0 .147

0 .60 0 .12 0 .04 0 .006 0 .073 0 .055

0 .60 0 .12 0 .04 0 .177 0 .177 0 .298

0 .60 0 .12 0 .04 0 .214 0 .140 0 .193

0 .60 0 .12 0 .04 0 .060 −0 .019 0 .225

0 .60 0 .12 0 .04 0 .085 0 .215 0 .203

0 .60 0 .12 0 .04 0 .215 0 .301 0 .342

0 .60 0 .12 0 .04 0 .060 0 .138 0 .130

0 .60 0 .12 0 .04 −0 .006 −0 .012 0 .145

0 .60 0 .12 0 .04 0 .143 0 .017 0 .161

0 .65 0 .20 0 .04 0 .020 0 .263 0 .336

0 .65 0 .20 0 .04 0 .300 0 .193 0 .328

0 .65 0 .20 0 .04 0 .347 0 .372 0 .541

0 .65 0 .20 0 .04 0 .509 0 .451 0 .472

0 .65 0 .20 0 .04 0 .451 0 .422 0 .490

0 .65 0 .20 0 .04 −0 .006 −0 .022 0 .060

0 .65 0 .20 0 .04 −0 .019 0 .133 0 .138

0 .65 0 .20 0 .04 0 .509 0 .374 0 .429

0 .65 0 .20 0 .04 0 .299 0 .203 0 .456

0 .65 0 .20 0 .04 0 .215 0 .089 0 .239

0 .65 0 .16 0 .04 0 .299 0 .203 0 .328

0 .65 0 .16 0 .04 0 .214 0 .237 0 .344

0 .65 0 .16 0 .04 0 .508 0 .415 0 .347

0 .65 0 .16 0 .04 0 .452 0 .400 0 .430

0 .65 0 .16 0 .04 0 .143 0 .144 0 .205

0 .65 0 .16 0 .04 0 .397 0 .637 0 .774

0 .65 0 .16 0 .04 0 .569 0 .481 0 .637

0 .65 0 .16 0 .04 0 .011 0 .206 0 .346

0 .65 0 .16 0 .04 0 .397 0 .127 0 .356

0 .65 0 .16 0 .04 0 .177 0 .105 0 .208

0 .65 0 .12 0 .04 0 .300 0 .200 0 .322

0 .65 0 .12 0 .04 0 .397 0 .507 0 .645

0 .65 0 .12 0 .04 0 .509 0 .422 0 .484

0 .65 0 .12 0 .04 0 .021 0 .283 0 .309

0 .65 0 .12 0 .04 0 .398 0 .236 0 .465

0 .65 0 .12 0 .04 0 .112 0 .182 0 .461

0 .65 0 .12 0 .04 0 .509 0 .449 0 .474

0 .65 0 .12 0 .04 0 .214 0 .320 0 .325

0 .65 0 .12 0 .04 0 .021 0 .318 0 .132

0 .65 0 .12 0 .04 0 .397 0 .346 0 .294

0 .55 0 .20 0 .04 −0 .017 −0 .024 0 .066

0 .55 0 .20 0 .04 −0 .006 −0 .014 0 .056

0 .55 0 .20 0 .04 0 .005 0 .010 0 .129

0 .55 0 .20 0 .04 0 .059 0 .066 −0 .015

0 .55 0 .20 0 .04 0 .039 −0 .025 0 .092

0 .55 0 .20 0 .04 0 .144 0 .059 0 .140

0 .55 0 .20 0 .04 −0 .006 0 .014 0 .048

0 .55 0 .20 0 .04 0 .038 0 .105 0 .265

0 .55 0 .20 0 .04 −0 .006 −0 .024 −0 .011

0 .55 0 .20 0 .04 0 .042 0 .027 −0 .017

0 .55 0 .16 0 .04 −0 .006 −0 .024 0 .017

0 .55 0 .16 0 .04 −0 .006 0 .066 0 .129

0 .55 0 .16 0 .04 0 .038 0 .035 0 .035

0 .55 0 .16 0 .04 0 .005 0 .002 0 .087

(continued)

Table 5 (continued)

p c p in p out k -Means Clique g -Clique

0 .55 0 .16 0 .04 −0 .014 0 .056 0 .168

0 .55 0 .16 0 .04 −0 .014 0 .043 0 .092

0 .55 0 .16 0 .04 0 .177 0 .145 0 .308

0 .55 0 .16 0 .04 −0 .019 −0 .005 0 .104

0 .55 0 .16 0 .04 0 .005 0 .004 0 .027

0 .55 0 .16 0 .04 0 .006 −0 .024 0 .064

0 .55 0 .12 0 .04 0 .007 0 .020 0 .201

0 .55 0 .12 0 .04 0 .040 −0 .025 0 .015

0 .55 0 .12 0 .04 0 .020 0 .017 0 .084

0 .55 0 .12 0 .04 0 .059 0 .060 0 .157

0 .55 0 .12 0 .04 0 .005 0 .018 0 .020

0 .55 0 .12 0 .04 0 .060 −0 .011 0 .010

0 .55 0 .12 0 .04 −0 .021 −0 .012 −0 .0 0 0

0 .55 0 .12 0 .04 −0 .014 0 .002 0 .036

0 .55 0 .12 0 .04 0 .041 −0 .011 0 .042

0 .55 0 .12 0 .04 −0 .019 0 .018 0 .145

mean 0 .135 0 .134 0 .215

Table 6

ARI averages controlling for p c .

0.55 0.6 0.65

k -means 0.021 0.095 0.289

clique 0.019 0.094 0.290

g -Clique 0.083 0.185 0.379

Table 7

ARI averages controlling for p in .

0.12 0.16 0.20

k -means 0.135 0.150 0.120

clique 0.146 0.147 0.110

g -Clique 0.217 0.233 0.197

d

b

t

0

a

c

t

w

c

t

i

a

a

t

a

b

m

o

t

f

a

e

A

n

A

w

6

d
etermine the unit group membership and if Z ≤ 4 the unit mem-

ership is inferred to the wrong group. Working out the calcula-

ion with m = 10 and p c = 0 . 65 , Pr [Z = 5] ≈ 0 . 15 and Pr [Z ≤ 4] ≈
 , 095 , while with p c = 0 . 55 , Pr [Z ≤ 4] ≈ 0 . 25 and Pr [Z = 5] ≈ 0 . 24 .

Three clustering methods are compared. The first two methods

re the k -means and the clique-partition, two methods that do not

onsider the network structure of the data. The third method is

he g -Clique presented in this paper. The k -means algorithm is run

ith k equal to the exact value of 2, an assumption that seldom

an be made in practice. The methods are compared in terms of

he ARI, the adjusted rand index, (Hubert & Arabie, 1985). The ARI

s an index that compares the true and the estimated partitions of

 population. It is equal to 1 if the true and the estimated partition

re equal, it is close to 0 (with the possibility of being negative) if

he estimated partition is equivalent to the random one.

The results of the experiment are reported in Table 5 . Looking

t the averages, it can be seen that the best ARI has been obtained

y the g -Clique, with a value of approximately 0.21, while the k-

eans and the clique partition gave approximately the same result

f 0.13. The ARI of the g -Clique algorithm is almost always bet-

er than the one of the other methods, the only exceptions are a

ew cases in which clusters are so hard to detect that all the ARIs

re approximately equal to 0. Tables 6 and 7 reports the ARI av-

rages controlling on values of p in and p c . It can be seen that the

RI decreases as the values of p c decrease, while connectivity do

ot have a monotone behavior: increasing the values of p in , the

RI of g -Clique first increases but then decreases, still remaining

ell above the ARIs of the other methods.

. Conclusions

In this paper a new combinatorial model has been proposed to

etect clusters for all those cases in which individual and relational

S. Benati et al. / European Journal of Operational Research 261 (2017) 43–53 53

d

T

g

A

n

i

fi

m

i

t

t

s

t

i

i

m

p

p

l

s

r

o

l

c

m

t

c

c

f

g

t

(

A

i

4

d

R

B

B

B

B

B

B

C

C

C

C

G

G

G

G

H

H

H

I

J

J

L

L

M

M

M

M

M

N

N

S

W

X

Z

ata are available. Two solution approaches have been pursued.

he first has been to cast the problem as an integer linear pro-

ramming model and take advantage of the constraints structure.

s it was seen, a new family of valid inequalities to represent con-

ection within a block with an exponential number of constraints

s introduced and a separation procedure to handle them in an ef-

cient way is also presented. This approach allowed to solve opti-

ally problems up to 40 units. The second approach has been to

mplement local search heuristic algorithms to take advantage of

he problem combinatorial structure and the local optimum defini-

ion. By this way, instances of up to 100 units were approximately

olved in a satisfactory way, that is, the ARI of the resulting clus-

ering is much better than any other clustering method.

The results on the ARI of the previous section shows that we

ntroduced a class of clustering methods that are worth explor-

ng further. Our future research will be devoted to improve the

ethodology introduced here. First, exact algorithms can be im-

lemented using column generation. This methodology has been

reviously proposed for clique partitioning but it should be tai-

ored to the model in which units must be connected. The second

tream of research will be devoted to improve the heuristic algo-

ithms proposed here. Both RR and VNS can be improved trading

ff accuracy with time. We may want faster methods to cope with

arger data sets, in that case constructive heuristics (like hierarchi-

al trees) may serve this goal. But it can also be the case that the

ost accurate calculation of the objective function is needed, so

hat VNS or RR can be sophisticated with all the tricks that are

ommon to local search heuristics. The third stream of research

an be devoted to model enhancement, to test whether the in-

ormation provided by the connectivity can be improved by other

raph topologies, like the modularity constraints, in the stream of

he community detection research rooted in Newman and Girvan

2004) .

cknowledgments

This research has been partially supported by Spanish Min-

stry of Education and Science/FEDER grants numbers MTM2013-

6962-C02-(01–02), MTM2016-74983-C2-(1–2)-R, Junta de An-

alucía grant number FQM 05849.

eferences

ansal, N. , Blum, A. , & Chawla, S. (2004). Correlation clustering. Machine Learning,

56 (1–3), 89–113 .
ekta ̧s , T. , & Gouveia, L. (2014). Requiem for the Miller–Tucker–Zemlin subtour elim-

ination constraints? European Journal of Operational Research, 236 (3), 820–832 .

enati, S. (2008). Categorical data fuzzy clustering: An analysis of local search
heuristics. Computers and Operations Research, 35 (3), 766–775 .

ertsimas, D. , & King, A. (2016). Or forum- an algorithmic approach to linear regres-
sion. Operations Research, 64 (1), 2–16 .

ertsimas, D. , & Shioda, R. (2007). Classification and regression via integer optimiza-
tion. Operations Research, 55 (2), 252–271 .

othorel, C. , Cruz, J. , Magnani, M. , & Micenkova, B. (2015). Clustering attributed

graphs: Models, measures and methods. Network Science, 3 , 408–4 4 4 .
afieri, S., Hansen, P., & Mladenovic, N. (2014). Edge-ratio network clustering by

variable neighborhood search. European Physical Journal B, 87 (5). doi: 10.1140/
epjb/e2014- 50026- 4 .
harikar, M., Guruswami, V., & Wirth, A. (2005). Clustering with qualitative infor-
mation. Journal of Computer and System Sciences, 71 (3), 360–383. doi: 10.1016/j.

jcss.2004.10.012 .
heng, H. , Zhou, Y. , Huang, X. , & Yu, J. X. (2012). Clustering large attributed informa-

tion networks: an efficient incremental computing approach. Data Mining and
Knowledge Discovery, 25 (3), 450–477 .

ombe, D. , Largeron, C. , Egyed-Zsigmond, E. , & Géry, M. (2012). Combining relations
and text in scientific network clustering. In Proceedings of the international con-

ference on advances in social networks analysis and mining, ASONAM 2012, Istan-

bul, Turkey, 26–29 august 2012 (pp. 1248–1253) .
avish, B. (1983). Formulations and algorithms for the capacitated minimal directed

tree problem. Journal of the Association for Computing Machinery, 30 (1), 118–132 .
ouveia, L. (1996). Using the Miller–Tucker–Zemlin constraints to formulate a min-

imal spanning tree problem with hop constraints. Computers & Operations Re-
search, 2 (3), 959–970 .

rötschel, M. , & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering

problem. Mathematical Programming, 45 (1–3), 59–96 .
rötschel, M. , & Wakabayashi, Y. (1990). Facets of the clique partitioning polytope.

Mathematical Programming, 47 (3, (Ser. A)), 367–387 .
ansen, P. , Mladenovic, N. , & Moreno Perez, J. (2010). Variable neighbour-

hood search: Methods and applications. Annals of Operations Research, 175 (1),
367–407 .

ansen, P. , Ruiz, M. , & Aloise, D. (2012). A VNS heuristic for escaping local ex-

trema entrapment in normalized cut clustering. Pattern Recognition, 45 (12),
4337–4345 .

ubert, L. , & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2 (1),
193–218 .

nglehart, R. , & Baker, W. (20 0 0). Modernization, cultural change, and the persis-
tence of traditional values. American Sociological Review, 65 (1), 19–51 .

aehn, F. , & Pesch, E. (2013). New bounds and constraint propagation techniques

for the clique partitioning problem. Discrete Applied Mathematics, 161 (13–14),
2025–2037 .

ohnson, E. L. , Mehrotra, A. , & Nemhauser, G. L. (1993). Min-cut clustering. Mathe-
matical Programming, 62 (1, Ser. B), 133–151 .

andete, M. , & Marín, A. (2014). Looking for edge-equitable spanning trees. Comput-
ers and Operations Research, 41 , 44–52 .

aporte, G. (1992). The traveling salesman problem: An overview of exact and ap-

proximate algorithms. European Journal of Operational Research, 59 (2), 231–247 .
arcotorchino, F. , & Michaud, P. (1982). Agrégation de similarités en classification

automatique. Review of Statistics and Its Application, 30 (2), 21–44 .
artí, R. , Resende, M. G. C. , & Ribeiro, C. C. (2013). Multi-start methods for combi-

natorial optimization. European Journal of Operational Research, 226 (1), 1–8 .
cPherson, M. , Smith-Lovin, L. , & Cook, J. (2001). Birds of a feather: Homophily in

social networks. Annual Review of Sociology, 27 , 415–4 4 4 .

iller, C. E. , Tucker, A. W. , & Zemlin, R. A. (1960). Integer programming formulation
of traveling salesman problems. Journal of the Association for Computing Machin-

ery, 7 , 326–329 .
iyauchi, A. , & Sukegawa, N. (2015). Redundant constraints in the standard formu-

lation for the clique partitioning problem. Optimization Letters, 9 (1), 199–207 .
eville, J. , Adler, M. , & Jensen, D. D. (2003). Clustering relational data using at-

tribute and link information. In Proceedings of the workshop on text mining and
link analysis, 18th international joint conference on artificial intelligence. Acapulco,

Mexico .

ewman, M. , & Girvan, M. (2004). Finding and evaluating community structure in
networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 69 (2

2), 026113–1–026113–15 .
wamy, C. (2004). Correlation clustering: Maximizing agreements via semidefinite

programming. In Proceedings of the fifteenth annual ACM-SIAM symposium on dis-
crete algorithms (pp. 526–527(electronic)). ACM, New York .

asserman, M. , & Faust, K. (1994). Social networks analysis: Methods and applica-

tions . Cambridge University Press .
u, Z. , Ke, Y. , Wang, Y. , Cheng, H. , & Cheng, J. (2014). GBAGC: A general Bayesian

framework for attributed graph clustering. ACM Transactions on Knowledge Dis-
covery from Data, 9 (1), 5:1–5:43 .

hou, Y. , Hao, J.-K. , & Goëffon, A. (2016). A three-phased local search approach for
the clique partitioning problem (English) Zbl 06620838. J. Comb. Optim., 32 (2),

469–491 .

https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0001
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0001
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0001
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0001
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0001
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0002
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0002
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0002
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0002
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0003
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0003
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0004
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0004
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0004
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0004
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0005
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0005
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0005
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0005
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0006
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0006
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0006
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0006
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0006
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0006
https://dx.doi.org/10.1140/epjb/e2014-50026-4
https://dx.doi.org/10.1016/j.jcss.2004.10.012
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0009
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0009
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0009
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0009
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0009
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0009
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0010
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0010
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0010
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0010
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0010
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0010
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0011
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0011
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0012
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0012
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0013
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0013
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0013
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0013
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0014
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0014
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0014
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0014
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0015
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0015
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0015
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0015
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0015
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0016
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0016
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0016
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0016
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0016
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0017
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0017
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0017
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0017
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0018
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0018
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0018
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0018
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0019
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0019
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0019
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0019
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0020
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0020
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0020
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0020
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0020
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0021
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0021
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0021
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0021
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0022
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0022
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0023
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0023
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0023
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0023
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0024
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0024
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0024
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0024
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0024
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0025
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0025
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0025
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0025
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0025
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0026
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0026
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0026
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0026
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0026
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0027
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0027
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0027
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0027
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0028
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0028
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0028
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0028
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0028
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0029
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0029
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0029
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0029
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0030
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0030
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0031
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0031
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0031
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0031
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0032
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0032
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0032
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0032
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0032
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0032
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0032
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0033
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0033
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0033
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0033
https://refhub.elsevier.com/S0377-2217(17)30114-5/sbref0033

	Clustering data that are graph connected
	1 Introduction
	2 Problem formulation
	2.1 Flow based formulation with two indices variables
	2.1.1 Valid inequalities

	2.2 MTZ based formulation with two indices variables
	2.2.1 Valid inequalities
	2.2.2 Alternative formulation

	2.3 A formulation with an exponential number of constraints

	3 Exact solution approaches
	3.1 Branch & cut procedure
	3.2 Incomplete formulations
	3.2.1 First incomplete formulation
	3.2.2 Second incomplete formulation
	3.2.3 Third incomplete formulation

	4 Heuristic
	5 Computational results
	6 Conclusions
	 Acknowledgments
	 References

